EECS 562

Homework 9

- 1. Determine the instantaneous phase and frequency for the following signals.
 - a. $cos(2\pi 1000000t + 1000t^2)$
 - b. $\cos(2\pi 1000000t + 1000 \sqrt{t})$
- **2.** Given a set of information bits $b_i = \{1, 0, 0, 1\}$. Let x(t) = 0 for 1 ms for a bit = 0 and x(t) = 1 for 1ms for a bit = 1.

A modulated RF signal is $y_{RF}(t) = 10\cos(2\pi(x(t)*10000 + f_c)t)$ where $f_c=10$ kHz. Plot y(t) for 0<t<4ms.

- **3.** A transmitted RF signal is given by $y_{RF}(t) = 10\cos(2\pi f_c t + \beta \sin(2\pi f_m t))$, where $f_c = 100$ MHz, $\beta = 4$, and $f_m = 10$ kHz. The message signal is $x(t) = \cos(2\pi f_m t)$.
 - a. Is the RF modulation:

i. PM

ii. FM

iii. VSB

iv. SSB

v. DSB-LC

- b. What is the instantaneous frequency?
- c. What is the total power in dB_W ?
- d. What is the frequency deviation, Δf ?
- e. What is the RF bandwidth of $y_{RF}(t)$?
- f. How much power is at 100 MHz?
- g. How much power is at 100.03 MHz?
- 4. Let the RF signal be

$$y_{RF}(t) = A_c \cos(\theta_i(t))$$
 where

$$\theta_i(t) = 2 \pi f_c t + \beta \sin(2 \pi f_m t)$$
 with $x_{bb}(t) = A_m \cos(2 \pi f_m t)$

Here A_m =1.0V and f_c =109MHz, f_m =1kHz, A_c =10V, β =0.3

- a. Is the phase or frequency modulation?
- b. What is the modulation index?
- c. Find the frequency deviation.
- d. Find the frequency sensitivity factor in Hz/V.
- e. Plot the amplitude spectrum of $y_{RF}(t)$.

State any approximations.

- f. What is the total power in $y_{RF}(t)$ in dB_W ?
- g. What is the RF bandwidth?
- 5. Let the RF signal be

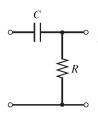
$$y_{RF}(t) = A_c \cos(\theta_i(t))$$
 where

$$\theta_i(t) = 2 \pi f_c t + \beta \sin(2 \pi f_m t)$$
 with $x_{bb}(t) = A_m \cos(2 \pi f_m t)$

Here A_m =1.0V and f_c =109MHz, f_m =1kHz, A_c =10V, β =3.

- a. Find the frequency deviation, Δf .
- b. Find the frequency sensitivity factor in Hz/V.
- c. Plot the amplitude spectrum of $y_{RF}(t)$.

d. What is the RF bandwidth?


- 6. For each case below use using Carson's rule to find the bandwidth of the frequency modulated signal. The deviation constant = 0.75 Hz/volt.
 - a. A_c =1.5V, f_m =2 Hz, f_c =8 Hz, message amplitude = A_m =0.5V,
 - b. A_c =1.5V, f_m =2 Hz, f_c =8 Hz, message amplitude = A_m =1.5V
 - c. A_c =1.5V, f_m =0.5 Hz, f_c =8 Hz, message amplitude = A_m =1.5V
 - d. Define a bandwidth expansion factor as B_{RF} / B_{bb} . Calculate the bandwidth expansion factor the systems defined in parts a)-c).
- 7. Let the message signal m(t) given below be the input to an FM modulator with k_f =20Hz/V and f_c =200 Hz and A_c =1.0. v = {2.5, 5, 7.5}, the symbol time=20ms.

$$\mathbf{m(t)} = \sum_{i=1}^{3} v_i \operatorname{rect}\left(\frac{t - (i-1) T_s - 0.5 T_s}{T_s}\right)$$

- a. Plot m(t).
- b. Plot the RF signal, $y_{RF}(t)$.
- c. Suggest a detector architecture detect each symbol

Measure power around each frequency for a symbol time and pick the largest.

- 8. In a stream of bits each pair of bits (2 bits) is mapped into one voltage level to form the baseband signal, e.g. m(t) = v_i for 20 ms, where v_i =0, 2.5, 7.5, 10. The message signal is input to an FM modulator with k_f =20Hz/V and f_c =2000 Hz and A_c =1.
 - a. What is the bit rate for this signal?
 - b. During a symbol time of 20ms are the 4 possible transmitted RF signals, are these orthogonal to each other?
- 9. A DC blocking capacitor is not needed when a balanced discriminator is used to demodulate FM signals, why?
- **10.** A HPF shown below has a transfer function of H(f) = $\frac{j2\pi fRC}{1+j2\pi fRC}$, the 3dB cutoff frequency = $\frac{1}{2\pi RC}$.

- a. Plot |H(f)| and find and mark the 3dB cutoff = f_{3dB} .
- b. The input to H(f) is $x_{RF}(t) = \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$. The output $y(t) \approx H(f_i(t))$. For R=800 Ω , $C = 10^{-9}$ f, $\beta = 1$, $f_m = 1000$ Hz, and $f_c = 100$ kHz. Find |y(t)|; note here $f_c << f_{3 \text{ dB}}$ H(f) is approximately linear.